4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to $3 \mathrm{sfs} "$. If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

1 (i)	attempts at threading indep prob of succeeding in threading const	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$	in context in context
(ii) (a)	$\begin{aligned} & 0.7^{4} \times 0.3 \\ & =0.0720(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Condone 0.072
(b)	$\begin{aligned} & 0.7^{5} \\ & =0.168(3 \mathrm{sfs}) \end{aligned}$	M2 $\text { A1 } 3$	or $\begin{gathered} 0.3+0.7^{3} \times 0.3 \\ \left.+0.7^{4} \times 0.3\right) \end{gathered}$ M1 for one term omitted or extra or wrong or $1-0.7^{5}$ or $\left(0.3+\ldots+0.7^{4} \times 0.3\right)$ or $0.3,0.7$ muddle or 0.7^{4} or 0.7^{6} alone. 0.6 not 0.7 M 0 in (a) M1 in (b) $1 / 3,2 / 3$ used M1 in (a) M1 in (b)
(iii)	likely to improve with practice hence independence unlikely or prob will increase each time	$\mathrm{B} 1$ $\text { B1 } 2$	or thread strands gradually separate $1^{\text {st }} \mathrm{B} 1$ must be in context. hence independence unlikely or prob will decrease each time or similar Allow 'change'
Total		[9]	
2 (i) (a)	Use of correct midpts $\begin{array}{ll} \Sigma l f \div \Sigma f & (=706 \div 40) \\ =17.65 & \\ \Sigma l^{2} f & (=13050.5) \\ \sqrt{\frac{" 13050.5 "}{40}-" 17.65^{\prime 2}} & (=\sqrt{ } 14.74) \\ =3.84(3 \mathrm{sfs}) & \end{array}$	B1 M1 A1 M1 M1 A1 6	$\begin{aligned} & 11,14,18,25.5 \\ & l \text { within class, } \geq \text { three } l f \text { seen } \\ & {[17.575,17.7]} \\ & \geq \text { three } l^{2} f \text { seen } \\ & \div 40,- \text { mean }^{2}, \sqrt{ } \text {.Dep }>0 . \\ & \sum(1-17.65)^{2} \text { f, at least } 3 \mathrm{M} 1, \div 40, \sqrt{ } \\ & \text { M1,3.84 A1. } \\ & \div 4 \Rightarrow \text { max B1M0A0M1M0A0 } \end{aligned}$
(b)	mid pts used or data grouped or exact values unknown oe	B1 1	not "orig values were guesses"
(ii)	$\begin{aligned} & 20 \div 5 \\ & =4 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	condone $20 \div[4,5]$ or ans 5
(iii)	$\begin{aligned} & 20.5^{\text {th }} \text { value requ'd and } \\ & 1^{\text {st }} \text { two classes contain } 14 \text { values } \\ & 16-20 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { B1 } \end{array}$	condone 20 oe or third class oe
(iv) (a)	increase	B1 1	
(b)	decrease	B1 1	
Total		[13]	
3 (i)	$\begin{aligned} & S_{h m}=0.2412 \\ & S_{h h}=0.10992 \\ & S_{m m}=27.212 \\ & r=\frac{S_{h m}}{\left.\sqrt{(S} S_{h h} S_{m m}\right)} \\ & =0.139(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 3	Allow x or $\div 5$ any one S correct ft their $S \mathrm{~s}$
(ii)	Small, low or not close to 1 or close to 0 oe pts not close to line oe	B1 ft B1	$1^{\text {st }} \mathrm{B} 1$ about value of r $2^{\text {nd }} \mathrm{B} 1$ about diag
(iii)	none or unchanged or "0.139" oe	B1 1	
(iv)	Larger oe	B1 1	
Total		[7]	

4 (i)	$\begin{aligned} & \left(0 \times \frac{1}{2}\right)+1 \times \frac{1}{4}+2 \times \frac{1}{8}+3 \times \frac{1}{8} \\ & =\frac{7}{8} \text { or } 0.875 \text { oe } \\ & \left(0 \times \frac{1}{2}\right)+1 \times \frac{1}{4}+2^{2} \times \frac{1}{8}+3^{2} \times \frac{1}{8} \quad(= \\ & \left.1 \frac{7}{8}\right) \\ & -\left(" \frac{7}{8} \text { " }\right)^{2} \\ & =\frac{71}{64} \text { or } 1.11(3 \mathrm{sfs}) \text { oe } \end{aligned}$	M1 A1 M1 M1 A1 5	```2 non-zero terms seen If \div3 or 4 M0M0M1(poss) 2 non-zero terms seen dep +ve result M1 all4 (x-0.875) terms seen. M1 mult p, \Sigma A1 1.11```
(ii)	Bin stated or implied 0.922 (3 sfs)	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Eg table or $\frac{1}{4}^{n} \times \frac{3}{4}^{m}(n+m=10, \mathrm{n}, \mathrm{m} \neq 1)$ or10C4 or 5 (or 4 or 6) terms correct
(iii)	$n=10 \& p=\frac{1}{8}$ stated or implied $\begin{aligned} & { }^{10} \mathrm{C}_{4} \times \frac{7^{6}}{}{ }^{6} \times \frac{1}{8}^{4} \\ & =0.0230(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } \\ \text { A1 } & 3 \\ \hline \end{array}$	condone 0.023
Total		[10]	
5 (i)	$\begin{aligned} & \frac{6}{14} \times \frac{5}{13} \times \frac{3}{12} \\ & \times 3!\text { oe } \\ & =\frac{45}{182} \text { or } 0.247(3 \mathrm{sfs}) \mathrm{oe} \end{aligned}$	M1 M1 A1 3	$\begin{aligned} & { }^{6} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \\ & \div{ }^{14} \mathrm{C}_{3} \\ & \text { With repl MoM1A0 } \end{aligned}$
(ii)	$\begin{aligned} & \frac{6}{14} \times \frac{5}{13} \times \frac{4}{12}+\frac{5}{14} \times \frac{4}{13} \times \frac{3}{12}+\frac{3}{14} \times \frac{2}{13} \times \frac{1}{12} \\ & =\frac{31}{364} \text { or } 0.0852(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \mathrm{M} 2 \\ \mathrm{~A} 1 & 3 \\ \hline \end{array}$	${ }^{6} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{3} \quad$ M1 for any one $\left(\div{ }^{14} \mathrm{C}_{3}\right) \mathrm{M} 1$ all 9 numerators correct. With repl M1 $(6 / 14)^{3}+(5 / 14)^{3}+(3 / 14)^{3}$
Total		[6]	
6 (a)	A: diag or explanation showing pts close to st line, always increasing B:Diag or expl based on $\mathrm{r}=1=>\mathrm{pts}$ on st line $=>\mathrm{r}(\mathrm{s})=1$	B1 B1 B1 3	Diag or expl based on $\mathrm{r}(\mathrm{s}) \neq 1=>\mathrm{pts}$ not on st line $\Rightarrow \mathrm{r} \neq 1$ $\mathrm{r}=1=>\mathrm{pts}$ on st line\&r(s) $\neq 1 \Rightarrow$ pts not on st line B1B1 $\mathrm{r}=1=>\mathrm{r}(\mathrm{~s})=1 \mathrm{~B} 2$
(b)	$\begin{aligned} & \bar{y}=2.4 \times 4.5+3.7 \\ & =14.5 \\ & 4.5=0.4 \times \text { " } 14.5 "-c \\ & c=1.3 \\ & \mathrm{a}^{\prime}=\mathrm{x}-\mathrm{b} \mathrm{y} \mathrm{y}:-14.5 \mathrm{M} 1 \mathrm{~A} 1 ; \\ & \text { then } \mathrm{a}^{\prime}=4.5-0.4 \mathrm{x} 14.5=-1.3 \mathrm{M} 1 \mathrm{~A} 1 \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Attempt to sub expression for y $\mathrm{x}=0.96 \mathrm{x}+1.48$-c oe sub $x=4.5$ and solve $\mathrm{c}=1.3$ 14.5 M1A1. $(\mathrm{y}-3.7) / 2.4=0.4 \mathrm{y}-\mathrm{c}$ and sub14.5 M1 c=1.3 A1
Total		[7]	
7 (i)	25/37	B2 2	B1 num, B1 denom 25/37xp B1
(ii)	$\frac{15}{23}$ seen or implied $\times \frac{39}{59}$ seen or implied $=\frac{585}{1357}$ or $0.431(3 \mathrm{sfs})$ oe	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { A1 } 4 \end{aligned}$	M1 num, M1 denom Allow M1 for 39/59x or + wrong p
Total		[6]	

8 (i)	$\begin{aligned} & 5!/ 2 \\ & =60 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow 5P3
(ii)	$\begin{aligned} & 4! \\ & =24 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow 2×4 !
(iii)	$\begin{aligned} & 2 / 5 \times 3 / 4 \text { or } 3 / 5 \times 2 / 4 \\ & \times 2 \\ & =3 / 5 \text { oe } \end{aligned}$	M1 M1 A1 3	allow M1 for $2 / 5 \times 3 / 5 \times 2$ or $12 / 25$ or ($6 \times 3!) \div(\mathbf{i}) \quad$ M2 or $3!\div(\mathbf{i}), 6 \div(\mathbf{i}),(6+6) \div(\mathbf{i}), 6 \mathrm{k} \div(\mathbf{i})$ or 6×6 or 36 or 1-correct answer M1 (k,integer ≤ 5)
Total		[7]	
9 (i)	p^{2}	B1 1	
(ii)	$\left(q^{2} p\right)^{2}$ oe $=\mathrm{AG}$	B1 1	
(iii)	$\mathrm{r}=\mathrm{q}^{2}$ $\mathrm{a} /(1-\mathrm{r})$ used $\left(S_{\infty}=\right) \frac{p^{2}}{1-q^{2}}$	B1	May be impliedWith $a=p^{2}$ and $r=q^{2}$ or q^{4}
		M1	
	$=\frac{p^{2}}{1-(1-p)^{2}}$	M1	Attempt to simplify using $\mathrm{p}+\mathrm{q}=1$ correctly. Dep on $r=q^{2}$ or q^{4} $\frac{(1-q)^{2}}{(1-q)(1+q)} \quad \text { or } p^{2} / p(1+q)$
	$\mathrm{p} /(2-\mathrm{p}) \mathrm{AG}$	A1 5	Correctly obtain given answer showing at least one intermediate step.
P2Total		[7]	

Total 72 marks

